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Galerkin/Runge-Kutta Discretizations for Parabolic 
Equations with Time Dependent Coefficients 

Stephen L. Keeling* 

Abstract. A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and ana- 
lyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike 
any classical counterpart, this class offers arbitrarily high order convergence while significantly 
avoiding what has been called order reduction. In support of this claim, error estimates are proved, 
and computational results are presented. Additionally, since the time stepping equations involve 
coefficient matrices changing at each time step, a preconditioned iterative technique is used to  solve 
the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve 
the original convergence rate while using only the order of work required by the base scheme ap- 
plied to  a linear parabolic problem with time independent coefficients. Furthermore, it is noted 
that special Runge-Kutta methods allow computations to be performed in parallel so that the final 
execution time can be reduced to that of a low order method. 

:- supported by the iu’acionai Aeronauiia a d  Spsie Administration nnder NPSP. Ccztract Nn. NAS1-181O7 while 
in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research 
Center, Hampton, VA 23665-5225. 
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1 Introduction. 

In this paper, linear parabolic initial boundary value problems with time dependent coefficients 
are considered. Specifically, the goal is to  construct and analyze fully discrete approximations to 
the unique solution u(x,t) of: 

where: 

dtu = -L(t)u in f2 x [ O , t * ]  { u = o  on an x [o,t*J 
u(x,O) = uo(x) in n, 

N 
L ( ~ > u  - aZi(4j(X, t>a , ,~ )  + &(x,~)u.  

i,j=l 

Here, 0 is a bounded domain in RN with dR sufficiently smooth. Also, &(x, t) and &(x, t )  are 
assumed to  be smooth. Further, on fi x [ O , t * ] ,  the matrix {4j}& is symmetric and uniformly 
positive definite and is nonegative. Also, the initial data uo is assumed to be both sufficiently 
smooth and compatible, and precise hypotheses on the required smoothness of the solution u are 
made as needed. 

Now, for 1 _< p 5 00 and integers s 2 0, let Wa*P E WaJ'(f2) represent the well-known Sobolev 
spaces consisting of functions with (distributional) derivatives of order 5 8 in L, E L,(n).  Also, 
let 11 * Ilw..P denote the usual norm. Then, in particular, take H a  = and denote its norm by 
11 - ] l a .  In addition, let H i  be the subspace of H1 consisting of functions vanishing on an in the 
sense of trace. Further, let the inner product on L2 be denoted by (. ,a), and the associated norm by 
11 - 11. Next, given Hilbert spaces H, HI, and H2, B(H1, H2) represents the Hilbert space of bounded 
linear operators from HI into H2, and B(H) = B(H, H). Also, for t 2  > tl, C'([tl, t2],  H) denotes 
the Banach space of operators, continuously differentiable to order I 2 0, from [tl, t2] into H. See 
Adams [l] for more details. 

Now for each t E [ O , t * ] ,  let L(t )  be extended to be L2-selfadjoint with domain H 2  n H i .  Also, 
assume that for I 2 0 and m 2 0 sufficiently large, L ( t )  E C'([O, t*],B(Hm+2 n H:, Hm)) so t h a t  

(1.2) ~ ~ ~ ( ' ) ( ~ ) ~ ~ ~ r n  I c( l ,  m)llullm+2 VU E n H,' 

where L(')(t)  5 DfL(t) .  Note that here and throughout this work, c (sometimes with a subscript) is 
used to denote a general positive constant, not necessarily the same in any two places. Moreover, if 
in a given (in)equality, there is a crucial element upon which c is meant to  depend, such dependence 
is indicated explicitly as in (1.2). Next, introducing the L2-selfadjoint solution operator T ( t )  for 
which L(t)T(t)  = I on Lo, assume that for I 2 0 and m 2 0 
sufficiently large, T ( t )  E C'([O, t* ] ,B(H",  Hmt2 n H i ) )  so that: 

T( t )L( t )  = I on H2 n H i  and 

(1.3) 11~(')(t)v11m+2 I ~ ( 1 ,  m)IIUIIrn Vu E H" 

where T(')(t)  
and the data uo satisfv: 

DiT(t) .  Finally, assume that for sufficiently large I 2 0 and m 2 0, the solution u 

For details connected with [1.2)-(1.4), see Sammon ilSj. 
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A rough description of the results now follows. For this, let h and k denote spatial and temporal 
discretization parameters respectively, and suppose that UF is a fully discrete approximation to 
u(nk) obtained according to the base scheme (1.38) described below. Now, in section 3, the error 
committed by (1.38), is shown to satisfy: 

where CY max(r + 1,2p + 2), p 5 min(v,q + l ) ,  q is the number of Runge-Kutta stages, and 
r and v represent respectively, optimal exponents, characteristic of the Galerkin method and the 
Runge-Kutta method upon which the fully discrete scheme is based. Note that under the mild 
condition that either r I 2p or h2 I ck ,  the above error is 0(h' + k"). Further, it is explained 
below that the methods which are most easily implemented have the property that Y 5 q+ 1 which 
makes the estimate optimal. It is also worth mentioning that inverse properties (associated with 
the use of a quasi-uniform triangulation of n) are never explicitly assumed, and as explained after 
Lemma 3.8, the constructions of section 2 are required for this. 

Next, section 4 deals with (1.46), a variant of the base scheme which incorporates a precondi- 
tioned iterative method (PIM) for the time stepping equations (1.40). Specifically, these equations 
are solved only approximately at the nth time level with say, I,, outer iterations (4.5), and j, inner 
(PIM) iterations (4.11)' and it is shown that the above convergence rate can be preserved while 
keeping $ lnjn bounded independently of h and k. Hence, the order of work is asymptot- 
ically as that for a linear parabolic problem with time independent coefficients. Additionally, in 
[14], semilinear and quasilinear problems are considered, and the latter are treated with methods 
such as those reported here to  obtain comparable results. 

I t  should also be mentioned that the discovery of the methods described below was fortuitous. 
Note that there are extrapolation options other than (1.35) which are apparently more natural. 
For example, D' could be replaced by T' in (1.35) since the latter is consistent with (1.39). This 
idea is considered together with (1.39) in a computational section. However, under rather general 
conditions, (1.5) is proved and demonstrated computationally only for (1.38) and (1.46). In fact, 
it  has been reported by many authors ([7], [13], [SI) that unless the solution to the differential 
equation satisfies very restrictive conditions, a classical fully discrete scheme fashioned after (1.23) 
cannot be expected to offer optimal order convergence. Furthermore, with regard to efficiency, 
(1.39) requires the formation of q new stiffness matrices at every time step. On the other hand, 
(1.38) and (1.46) require only the formation of a single such matrix and, at the expense of at most 
l O O q - l %  more storage, the recall of p - 1 of its counterparts formed at previous time steps. 

In [7], Crouzeix analyzes (1.39), and with Butcher's conditions C ( p  - 1) and B ( Y ) ,  [5] he 
establishes the L2 estimate: 

Since 0 (h' + I c y )  has not generally been observed experimentally, this suboptimal phenomenon has 
been called order reduction. Note further that this L2 estimate depends upon the assumption that 
the stages are computed exactly. On the other hand, in [13], Karakashian considers approximating 
the stages with a PIM, and proves that the above estimate holds while the order of work is kept 
optimal. Also, he constructs collocation type implicit Runge-Kutta methods (IRKM's) for which 
p = Y = q + 1. Nevertheless, such methods have limited stability for q 2 3. In fact, there is a 
general trade-off among IRKM's in the sense that the more stable methods suffer more from order 
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reduction while those which do not suffer so, are not as stable. However, when (1.39) is modified 
as in (1.38)) it is possible to achieve high order even for very stable methods. For example, in 
section 4, an algebraically stable IRKM is used for a problem of the form (l.l), and optimal order 
convergence is obtained with (1.46) but not with a counterpart based on (1.39). 

Douglas, Dupont and Ewing [lo] have analyzed Galerkin/Crank-Nicholson fully discrete approx- 
imations for a class of quasilinear parabolic problems, proving an optimal L2 estimate for a method 
which is second order in time. Also, this rate was shown to be preserved by an algorithm in which 
the time stepping equations are solved only approximately with an  optimal order of work. Then 
studying (1.1)) Bramble and Sammon [3] have obtained similar results for some Galerkin/Obrechkoff 
fully discrete approximations, proving optimal L2 estimates for methods up to fourth order in time. 
Finally, note that in [9], Dougalis and Karakashian analyze Galerkin/Runge-Kutta fully discrete 
approximations for the Korteweg-De Vries equation. In fact, they prove optimal L2 estimates for 
some modified IRKM's which are up to fourth order. Hence, the spirit of their work is similar to 
that of the present study. 

In the remainder of this section, there is a presentation of material relevant to  the spatial and 
temporal discretizations considered here, which concludes with a precise definition of the schemes 
for which the above claims are made. 

Spatial Disc ret izations 

To make the following machinery more definite, consider the Ordinary Galerkin Method for the 
spatial approximation of the solution to (1.1). Let D(t)(.,.) be a bilinear form defined by: 

N 
~ ( t ) ( u , ~ )  ( P i j ( t ) a z i u , a z i W )  + ( ~ o ( t ) u , w )  u, w E H i .  

Next, let Sh represent an approximation subspace consisting of continuous, piecewise polynomials 
of degree 5 r - 1, vanishing on all. Then, take Th(t): L2 + s h  to  be an approximation to  the 
solution operator T ( t )  defined by: 

i, j = 1  

D ( t ) ( T h ( t ) w , X )  ( W , d  vw E L2, vx E s h .  

For more examples of Galerkin methods satisfying the assumptions enumerated below, see Bramble, 
Schatz, Thomde, and Wahlbin [4], and Sammon [16], [17]. 

Depending on the Galerkin method used for the spatial approximation, let HE be a linear space 
equipped with a norm 11 - and satisfying the following properties. Suppose H 2  n H: c H E  and 
that: 
(1.6) Ilulll 5 CllullE VU E H E ,  

(1.7) 11UllE I cllul12 Vu E H 2 .  

For example, for the method described above, take HE = H i .  Now let { S h } O < h < l  be a family of 
finite-dimensional subspaces of H E  satisfying the following for some integer r 2 2: 

inf (11. - X I [  + hllv - x I I E )  I c h S I l ~ l l a  VU E H a  n H i ,  2 5 s 5 r .  
XESh 

(1.8) 

Then suppose that for each t E [ O , t * ] ,  a corresponding family of operators { T h ( t ) } f J < h < l  is given 
satisfying: 
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i. Th(t) : L2 --t Sh is selfadjoint, positive semidefinite on ~52, and positive definite on sh. 

ii. For o < h < I ,  Th(i!) E C'([o,t*],B(L2,Sh)) for Z 2 o sufficiently large. 

iii. For 2 5 s 5 r, 0 5 t 5 t * ,  and Z 2 0 as large as required in the sequel: 

(1.9) 
Hence, the restriction of Th(t) to sh is invertible and its inverse is henceforth denoted by Lh(t). 
Since Lh(t) is also positive definite and selfadjoint on sh, both Lh(t) and Th(t) have square roots 
but it is also assumed that: 

ll[T(')(t) - Tf)(t)]v(( + h([[T( ' ) ( t )  - Tf)(t)]vIIE 5 Ch"((vl ls-2 Vu E 

(1.10) cllTh'(t)wll 5 CIIT)?(t)WIIE 5 l l w l l  5 llWllE vw E L2, 
1 1 

(1.11) llxll 5 llxllE 5 C I I L i ( t ) X I I  5 cl lLi( t )x l lE 'dx E sh. 
Also Lh(t) E c'([O,t'],B(Sh)) for I >  0 sufficiently large and in fact, Bales [2] has proved that for 
0 5 s , t  5 t ' ,  and I >  0: 

(1.12) l l L ~ ( ~ ) ~ ~ ) ( s ) L ~ ( ~ ) x l l  I c(l)llxll vx E sh, 

(1.13) I I Th' ( t ,  L F )  (s) T; ( t ,  11 5 .(I) I I u  I I vu E L2. 

Then using the selfadjointness of these operators, the following are straightforward consequences 
of (1.12) and (1.13). For 0 5 s , t  5 t': 

(1.14) IITh'(s)L/!(t)xll 5 cllxll vx E sh, 

(1.15) l l L h t ( ~ b J l l  5 cllvll vu E L2, 

(1.16) I(Lf)(s)X, X ) l  5 c(l)(Lh(t)X, x)  'dx E sh. 
In addition to  (1.16), assume that for 0 5 t 5. t* and I 2  0: 

(1.17) I(Lf)(t)X, 411 5 c(z)IlXllEI1411E vx, 4 E sh. 

Next, defining the elliptic projection operator as P E ( ~ )  E Th(t)L(t), it follows from (1.9) and (1.2) 
that for 0 5 t 5 t': 

(1.18) [ [ [ I  - PE(t)]vll -k h(l[I - PE(t)]vl(E 5. C h ' l l v l l d  V u ~ H " n H 0 1 ,  2 1 s 5 r .  

In fact, with w ( t )  E P ~ ( t ) u ( t )  and q( t )  
that: 

(1.19) SUP {ll~(')(t)ll -k hllq(')(t)llE} 5 ChaIluo116+21 2 5 s < r ,  0 5 . 2 1 5 a r - s .  

Finally, it can be shown that PO = Lh(t)Th(t) is for every t E [ O , t * ] ,  the orthogonal projection of 
L2 onto Sh and that Th(t) = Th(t)Po. Then, since I - PO is majorized by I - PE in L2, it follows 
from (1.18) that: 

(1.20) Il(1- P0)Vl l  L Ch811~llLl V v E H * n H , ' ,  2 5 s 5 r .  

u(t) - w( t ) ,  (1.2), (1.4), and (1.9) can be used [3] to show 

ost<t* 
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Now, (1.1) has the following semidiscrete formulation. Find Uh : [0, t * ]  --+ sh satisfying: 

(1.21) 
1 

where u; E s h  is a suitable approximation to uo. In [17], Sammon analyzes approximations of the 
form (1.21), and with assumptions comparable to those described above, he proves an optimal L2 
estimate: 

SUP Ilu(t) - uh(t)I( I Ch'lluoIIr- 
o<t<t* 

In the present paper, semidiscrete approximations are not analyzed. Instead, (1.21) serves only as a 
source of inspiration for fully discrete approximations, and Uh is not even mentioned in forthcoming 
proofs. 

Temporal Disc ret izat ions 

For the temporal approximation of the solution to (1.21), Implicit Runge-Kutta Methods 
(IRKM's) are now introduced. Given an integer q 2 1, a q-stage IRKM is characterized by a 
set of constants {a;j}&=l, {bj}:=i,  and { ~ i } : = ~ ,  and it is convenient to make the following defini- 
tions: 

Q bT G (bl ,bz , .  . . , b q ) ,  B dia { b i } ,  A E {aij};,,=i, 
l& 

M B A +  ATB - bbT, T = dia {T ; } ,  eT E ( l , l , .  . . , l ) .  
l<i& 

I 

I 

For the IRKM formulation used in this work, choose arbitrarily, to  E R, yo E R", F : Rn+l + R" 
sufficiently smooth, and k > 0 sufficiently small, so that for t o  5 t I t o  + k, smooth functions 
y,p : R --+ R" are well-defined by: 

(1.22) 

9 

~ ' ( t )  = YO + (t - t o ) x a i j F ( t o  + T j ( t  - t o ) , ~ J ( t ) > ,  

9(t) = Yo + ( t  - to)Cb;F(to + T i ( t  - to),y'(t>). 

1 I j 5 q 
j = 1  

9 

i= 1 

(1.23) 

The method is described as ezplicit if aij = 0, i 5 j and implicit if for any i ,  a;i # 0. Also, it is said 
to  have order Y if for every y and 9 defined as above, Dfy(t0)  = D;*(to), 0 5 1 5 Y. Butcher [5] 
has developed simple conditions for the above parameters which guarantee a given order; however, 
only the following is explicitly required in this work: 

(1.24) I!bTA'-le = 1 1515Y. 

To see the roots of condition (1.24), let (1.22) have n = 1, t o  = 0, yo = 1, and F(y) = -y, so that 
y(t) = e-t .  Then, from (1.23), i ( t )  = r ( t )  where r ( z )  is a rational approximation to  the exponential 
e-' given by: 
ji.25j r i z j  5 1 - zb'(l+ zAj-'e.  



Expanding this expression shows that r(z) is a uth order approximation to the exponential if and 
only if (1.24) holds. Next, with regard to stability, an IRKM is said to be Ao-stable if: 

(1.26) l r (4I  5 1 vz 2 0, 

and strongly Ao-stable if: 
(1.27) SUP I d.11 < 1 vzo > 0. 

e zo 
Also, a method is called algebraically stable if M and B are positive semidefinite. However, if an 
algebraically stable method is irreducible (not equivalent to a fewer stage method) then: 

(1.28) 

One other notion of stability which is useful here is that of dissipativity: 

B is positive definite, and M is positive semidefinite. 

(1.29) - 1 < - 1 + 6 5 r( z )  5 1 vz 2 0. 

Ao-stability is required of all IRKM's considered in this work. However, in order for the ap- 
proximations to decay with respect to the time step, strong Ao-stability must hold. In fact, to 
guarantee decay, both (1.27) and (1.28) are assumed. Then in section 4, the iterative scheme (1.46) 
described below requires at least (1.29) in addition to: 

(1.30) 
8 vz 2 0. 

(1 + 4 3  
r ( z )  5 1 - c 

This growth condition is extremely mild and this author is unaware of any popular IRKM which 
fails to satisfy it. Also, requiring (1.29) and (1.30) improves on a related result of Karakashian [13] 
in which (1.27) is used. Next, note that the spectrum of A, a(A) is related to the poles of r(z) and 
in addition to the above, it is assumed throughout this paper that: 

(1.31) a(A) c {z E R : z > 0). 

Returning t o  the temporal discretization of (1.21), let a q-stage IRKM of order u 2 1 be given. 
Assume also that there exists a q x q matrix D satisfying: 

(1.32) D[e; Ae; . . . ; Aq-'e] = [Ae; 2A2e;. . . ; qAqe]. 

Again, this author is unaware of any well-known IRKM for which such a D fails to  exist. In fact, 
the so-called collocation type methods are those for which D = T. Now with p min(v, q + l), it 
follows from (1.32) and (1.24) that: 

(1.33) lAD'-'e = D'e 15  15 p -  1, 

(1.34) lbTD'-'e = 1 1 5 1 5 p .  

Next, for 0 5 n 5 n* - 1, n*k = t * ,  let the real values {6g}til,-, be chosen distinctly, so that the 
q x q matrices are well-defined by: 

(1.35) 

I 

i 

m=O 
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as the computation of their components involves the inversion of the p x p Vandermonde matrix 
{ (6E)'}kyLo. In addition, assume that these parameters are bounded independently of n: 

Actually, it is clear below that the natural and computationally advantageous choice for (1.35) is: 

-m, p - l 5 n 5 n * - l .  

In any case, define t" 3 nk and 7: E tn  + Skk, and for 0 5 n 5 n* - 1 , O  5 t 5 t* ,  and 0 5 s 5 k,  
let the following be defined on S h  E [Sh]Q: 

u- 1 

Now with: 
(1.37) 

suppose that for 0 5 n 5 n* - 1, the approximation Ur E S h  is given, where Uz w u" and 
u" = u(x,t"). Then, let U;+l w u"+l be given by what is henceforth called the base scheme: 

UF = eUL-kAz;U,"  { U;" = ( I  - b*A-'e)U," + bTA-'DF 
(1.38) 

where UF E S h  is well-defined provided [I+ k A z ; ]  is invertible. Here, Ai?; for example, is 
understood in the sense of composition of operators defined on S h .  Note that if the temporal 
discretization of (1.21) were accomplished as prescribed by (1.22) and (1.23)) the following would 
result: 

Uz = e U t - k A E ; U /  
where E: dia? {Lh(tn + kTi)}. 

1 l i - q  U;+' = ( I  - bTA-le)UF + bTA-'DF { (1.39) 

However, as discussed in the beginning of the Introduction, (1.38) is designed to  improve upon 
(1.39) with the indicated modification. 

Now, with regard to iterative approximations, note that an efficient method is needed for solving 
the time stepping equations: 
(1.40) 

According to (1.31), A can be transformed as follows: 

[ I  + kAZ;]U; = eU[. 

SAS-I  = A dia {Xi}  + subdiag {e;}; X i > O ,  1 5 i s q ;  O i = O o r l ,  2 5 i 5 q .  
l l i f q  2<i5q 

Then q: w 0; can be obtained by the (outer) iterations: 

(1.41) [ I  + k A L ; ] ( S v )  = {SeU" + k S A ( L ;  - z;)q!!l} Rr 15r5rn  

7 



where: 
n- 1 .., 

(1.42) e$= (-1) n-m-l(  :-+: ) fir 15 n 5 n* - 1, v,O eU,D, 
m=n-1-p, 

n = O  n = O  

p + l <  n 5 n* -1, 
pn- n-1, l I n 5 p  { :: 

and (1.41) is started with vt E 

Now consider the simple but important observation that if: 

{ :, p+ 1 5 n I n* - 1, 

(1.43) In E p +  1 - n, 15 n 5 p 

provided { G ~ } ~ ~ l n - l - p ,  are computed as indicated below. 

(1.44) A i  # A j ,  i #  j and t+ =0 ,  2 5  i s  q, 

then the block system above decouples into the following equations which can be solved in parallel 

[ I  + ICAiL;](Sqn)i = (R,n)i l I i < q .  

Then, to avoid having to factor new coefficient matrices a t  every time step, a preconditioned 
iterative method is used to approximate with (inner) iterates, say { ~ j } ~ ~ j ~ j n .  Further, it  is 
shown that there exist integers {jn}cil such that: 

. no-1 
(1.45) 

while the convergence order (1.5) is preserved for what is henceforth called the iterative scheme: 

(1.46) 
[ fi; = qnjn  

U;+l = (I - bTA-le)U; + b*A-'c;. 

Finally, let the initial approximation for this scheme be given by (1.37) also. 

2 The Product Space Operators. 

In this section, the machinery elaborated between (1.2) and (1.20) is generalized to  analogous 
operators defined on products of spaces on which their precursors are defined. Also, various techni- 
cal lemmas are proved for later use. Now, in addition to s h ,  define the product spaces L2 E [L2]Q, 
HI= 0 - [ H i ] q ,  HE   HE]^, and Hm E [HmIq.  Also, denote the natural product space norms by: 

Q Q 

11@11E E Ilhll;}', ll@llm {E ll'$i/lk}', and 1 1 @ 1 1  E I l @ l l O .  
i= 1 i= 1 

Then, for 0 5 n 5 n* - 1, 0 5 t I t* and 0 5 s 5 I C ,  let the following be defined on H2 n Hi: 

Y- 1 

8 
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The first step is to construct, for 0 5 n 5 n* - 1 and 0 5 s 5 k, operators -fn(s) (7" E if"(k)) 
satisfying: 

P ( S ) P ( S )  = I on L2 

P(s )E"(s )  = I on H2 n HA. 
b 

1 

T ( t )  E diag{T(t)}, 7" E 7 ( t " )  

{ (2.1) 

Note that with the following defined on L2 for 0 5 t I t* and 0 5 n 5 n* - 1: 

9 x q  

it"(.) cannot be taken as a combination of such operators unless D is diagonal. 

Lemma 2.1 For 0 5 n 5 n* - 1, E"(.) E C'([O, k], B(Hm+2 n HA,Hm)) where 1,m 2 0 are as in 
(1.2). Also the following hold: 

I 

(2.2) I l 4 m S ) v l l m  I c( l ,  m)llvllm+z 

(2.3) II[E"(.) - L"1vllm 5 c(m)kllvllm+z 

VU E Hm+2 n H1 o, O l s L k ,  and 0 5 n 5 n * - l .  

Proof: The crucial observation is that by (1.35) with 1 = 0: 

and (2.3) follows with (1.36) and (1.2). Also, (2.2) follows using (1.36) and (1.2). w 

Theorem 2.1 Let m, 1 2 0 be as in (1.3). Then for  k small enough, and 0 5 n I n* - 1, there 
ezist operators Tn(s) E C'([O, k], B(Hm,Hm+2 n HA)) satisfying (2.1) and: 

(2.4) I l ~ 6 ~ n ( s ) v 1 1 m + 2  5 C U ,  m)llvllm Vv E Hm. 

Proof: Let v E Hm be chosen arbitrarily, and define 3: Hm+2 n HA -+ Hm+2 n HA by: 

3u 3 7"{v + [L" - E"(s)]u}. 

117(u2 - Ul)llrn+2 5 c(m)ll[.C" - E"(S)l(U2 - w ) l l m  I 4lU2 - Ulllm+2. 

By (1.3) and (2.3), with k small enough, there is an E E (0 , l )  such that V U ~ , U ~  E Hm+2 n HA: 

I 

Hence 7 is a global contraction and has a unique fixed point. Thus, for every v E Hm, there 
exists a unique element T"(s)v E Hm+2 n HA such that En(s)Tn(s)v = v. In particular, the first 
part of (2.1) holds. Also, if u E Hm+2 n HA and w 3 T"(s)E"(s)u - u, then by the uniqueness, 
Zn(s)w = 0 implies that w = 0. So, (2.1) follows. Next, the following estimate is well-known: 

I i IIT"(s)v - 7"vllm+2 L (1 - E ) - y 3 7 " v  - 7"VIIm+2. 

'hy (1.3) and (2.3): 



Then, for the case I = 0, (2.4) follows from the last two inequalities and (1.3). Now, by estimating 
difference quotients, it can be shown in a straightforward way that a8fn(s) = -;in(s)a8En(s)f"(s) 
for 0 5 s 5 k and the smoothness of r"( s )  follows inductively with Lemma 2.1. Finally, after 
differentiating the first line of (2.1): 

af-t"(s) = -E ( f ) r"(s)ak'e"(s)adr"(s) 
i= 0 

and (2.4) follows inductively using (2.2). 
Now with trivial modifications of the above, the following is obtained for the adjoints. 

Lemma 2.2 For 0 I n 5 n* - 1, zn(s)* E C'([O,k], B(Hm+2 nH;,Hm)) where I,m 2 0 are as in 
(1.2), and: 
(2.5) Ila:E"(s)*Vllm I 4, m)llvllm+2 VV E Hm+2 n HA. 
Furthermore, withm,I 2 0 as in (1.3), there ezist operators Tn(s)* E C'([0,k],B(Hm,Hm+2nHA)) 
satisfying: 
(2.6) Il~:Tn(s)*vllm+2 I 4, m)llvllm Vv E Hm. 
and ~ " ( S ) * ~ " ( S ) *  = I on La, r"(s)*Z"(s)* = I on H2 n HA. 

The next step is to construct for 0 5 n 5 n* - 1 and 0 I s I k, operators Th"(S) (7; E T;(k)) 
satisfying: 

2;:(s)T;(s) = Po on Lz 

T;(s)Z;(s) = I on Sh 

7hn 7h(tn) 

{ (2-7) 

where PO 3 diag{Po}. Note that with the following defined on L2 for 0 5 t 5 t* and 0 5 n 5 n* - 1: 
9 x 9  

7h(t) diag{Th(t)}, 
9 x 9  

rT(s) cannot be taken as a combination of such operators unless D is diagonal. 
Now let {Dh(t)(',')}O<t<t' be a family of bilinear forms defined on HE x HE so that: 

(2.8) Dh(t)(X,'$) = (Lh(t)X, '$1 vx, '$ E she 

More specifically, with D!'(t)(-,-) 3 D:Dh(','), assume that for 0 I t 5 t*,  I 1 0, and 2 5 m 5 r: 

(2-9) ID t ' ( t ) ( . lW)  - (L(''(t)v,w)l 5 c(l)hm-'llVllmllW - UllE, 

V u E H m n H i ,  V w E H 2 n H i + S h ,  V u E H 2 n H , ' ,  

(2.10) I ~ ! ' ( ~ ) ( w ) v ) I  5 ~(OIIWIIEIIUIIE VW,U E HE, 

(2.11) c l k l l &  5 Dh(t)(X, X) vx E sh. 
For example, these assumptions are readily verified for the Ordinary Galerkin Method mentioned 
in the Introduction. For additional examples, see Sammon [16], [17]. Next, for 0 5 t I t*, 
0 I n I n* - 1 and 0 5 s 5 k,  let the following be defined on HE x HE: 

9 CC- 1 

Dh ( t )  (w, v) XDh ( t )  (wi 9 vi) 9 Dz(s)(w,v) E Dh(tn + 6kS)(rkw,v).  
i= 1 m=O 



I Lemma 2.3 For k > 0 small enough, 12 0, 0 5 n 5 n* - 1 and 0 5 s 5 k: 

(2.12) VW,V E HE I a: Kb) (w, 4 I 5 I I WI I E I lvll E 

(2.13) CllXll~ 5 W ) ( X , X )  sh. 1 

Proof: Using (2.10) and (1.36), (2.12) follows in a straightforward way. Then, by (2.12), (2.11) and 
(1.35) with 1 = 0: 1 

bhn(S)(x,x) = h(tn)(X,X) + /'&D,"(r)(X,X)dr 2 c(1- k)11X11k = E  S h  
0 

and (2.13) follows for k small enough. 
Discrete counterparts to  Lemma 2.1 and Theorem 2.1 appear next. 

Lemma 2.4 For 0 5 n 5 n* - 1, cz(s) E C'([O, k], B(Sh)) where 1 2 0 is as  i n  (1.13). Also, the 
following hold: 
(2.14) 11 7h' ( t, 2 (s) 7: (t)fl I 5 c( 1 )  I I f  1 I 
(2.15) 

(2.16) 

IITh'(t)[th(h) - th(ti)]T:(t)fll I clt2 - tilllfll 

IIThi(t)[2;(~) - ti]Ti(t)fII 5 ckllfll 

Vf E L2, 0 5 t , t l , t 2  5 t* ,  0 5 s 5 k, 0 5 n 5 n* - 1. 

Proof: The manipulations required are similar to those needed for Lemma 2.1, except that (1.13) 
is used instead of (1.2). 

Theorem 2.2 Let 1 2 0 be as i n  (1.12). Then for k small enough, and 0 5 n 5 n* - 1, there exist 
operators T f ( s )  E C ' ([ O,k], B(L2,S h ) )  defined by: 

(2.17) Dhn(S)(rhn(s)f,X) = (f, X) VfEL2, V X E S ~ ,  O 5 ~ 5 k  

and satisfying (2.7) in addition to: 

(2.18) lla:%n(S>fllE 5 c ( l ) l l f l l  I 
I 

(2.19) I I t~ ( t )a~r~(s ) tBh ' ( t )X I I  5 C(l)llXll 
1 Vf E L2, = E  S h ,  61,62 =O,z 0 5 t 5 t*, 0 5 s 5 k, 0 5  n 5 n* - 1. 

Proof: That rhn(s) is well-defined by (2.17) follows from Lemma 2.3 and the Lax-Milgram Lemma 
[6]. For (2.7), note first that by (2.8), for X, @ E Sh: 

r- 1 r- 1 

m = O  m = O  
D;(s)(x, a) = ~ ~ ( t ~  + s;s)(r;x, a) = ( e h ( t n  + s:s)r;x, 9) = (Z;(S)X, 9). 

Combining this with (2.17), it follows that VX, a, E S h  and Vf E L2: 

(2?;(s)r;(s)f,x) = D)y(s)(qys)f,X) = (f,X) = (Pof,X), 
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Dh"(s)(T;(s)E:(s)*,a) = (E:(s)*, a) = Dh"(s)(*, a). 
Then (2.7) follows after setting X = [E:(s)T;(s) - &If, 
to obtain (2.19) for the case that 1 = 0, set E 3 (7;)i[L: - 2:(s)](Thn)+ so that by (2.16): 

= T;(s)z:(s)* and using (2.13). Next, 

l l [ I  - EIXll 2 (1 - Ck)llXII W E  S h .  

Hence, for k small enough: 

L> ( t )  T;(s) L? ( t )  = [ L> ( t )  (7;) $1 [ I  - E]-1[ (7;) L? ( t ) ] .  

If 01 = 02 = !j, the first case of (2.19) follows with (1.14) and (1.15). Otherwise, (1.10) is 
used. Now by estimating difference quotients, it can be shown in a straightforward manner that 
88T;(S) = -T;(s)a8E:(s)T<(s) for 0 2 s 5 k,  and the smoothness of T;(s) follows inductively 
with Lemma 2.4. Next, after differentiating the first part of (2.7): 

so (2.19) follows inductively using (2.14). Finally, by setting 01 = $, 02 = 0 and X = Pof in (2.19), 
(2.18) follows with (1.11) since Th"(s) = T;(s)i?:(s)T;(s) = Tf(s)Po. 

Next, certain inequalities related to (2.9) are needed. 

Lemma 2.5 For k > 0 small enough, the following hold: 

(2.20) 

(2.21) 

Iap;(s)(V,W) - (a:E"(S)v,W)I L c(~)~m-l~~vllmllw - UllE 

la:D;(s)(W,V) - (w,afE"(s)*v)l L c(r)hm-lIIVllmllW - UllE 

VvEHmnH;, VwEH2nHt+Sh, VuEH2nHt, VfEHm, V X E S ~  2 1 m 5 r ,  12 
0, 0 5 s 5 k ,  O L n < n * - l .  

Prooj First, note that: 

i= 0 

so (2.20) follows with (2.9). Also, (2.21) follows similarly. For the remaining inequality, the key 
observation is that by (2.17), the left side of (2.22) is equal to: 

I a: [ b?( s) ( 7 " (9) f , X) - (f , X)] I = la f [ Dh" (s) (7 " (s) f , X) - (E"( s) T "( s) f , X)] I 
and (2.22) follows using (2.20) and (2.4). 

The groundwork for a generalization of (1.9) is now complete. 
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Theorem 2.3 For k > 0 small enough, the following holds for 0 5 n 5 n* - 1, 0 5 s 5 k, 1 2 0, 
and 2 5 m 5 r: 

(2.23) [ la : [T" (~)  - Thn(s)]vll + hlla:[T"(s) - T~"(S>]V~~E 5 c(l)hmllvl),-2 VV E Hm-2. 

ProoJ With 2 5 m 5 r, let v E Hm-2 and define XI E S h  to be the closest to a:f"(s)v in the 
norm 11 - 1 1 ~ .  Then, define: 

E' E a ; [ f " ( ~ )  - T ~ ( s ) ] v  = [~:T"(S)V - Xi] - [ ~ : T ~ ( S ) V  - Xi] E Eo 1 - E,,. 1 

II JGll 5 c ( l )  /am- IIvllm-2. 

C l l E A l l k  I Dhn(s>(EA, E;) = Dhn(s)(EA, E;) - Dhnb)(EZ, E;) I cII~AIIEII~;IIE + IDhn(s)(E', E;)I 

By (1.8) and (2.4): 

Next, by (2.12) and (2.13): 

By (2.22), with ill-defined sums understood to be zero: 

1 
IDC(s)(E1, E;)I = IC ( f ) a:-iD;(s)(Ei,E;) - C l - l (  f ) a:-'D;(s)(E', g)I 

i = O  i=O 
1-1 

5 c( 1)  hm-' I IvI I m- 2 11 EA 1 I E + CI I EA I I E X  I I 

So, the indicated estimate for llE'll~ follows inductively from the last three inequalities. Now, a 
duality argument is used to complete the proof. Define Xi E S h  to  be the closest to 'i"(a)*E' in 
the norm 11 0 1 1 ~ .  Then, with ill-defined sums understood to be zero: 

I [ E -  
i= O 

1 

1 IF11 4- IF21 5 c(l)hllE'IICl/E"IIE 

IF31 I c(l)hm-lllvllm-211X; - Tn(s)*E'IIE 5 ~(~)~mllvllm-211~'II. 

i= 0 

I while the case for F2 follows with (2.12), (1.8), and (2.6). Then, by (2.22), (1.8), and (2.6): 

llE'112 = f: ( f ) [(E',a:-'E"(s)*if"(s)*E') - a:-iD;(s)(Ei, t" (S )*E' ) ]  
i= 0 

4 

- E ( f ) (E',a:-'~n(s)*ifn(s)*E') CFj.  
I 

i=O j= 1 
I 

i= 0 

Now (2.23) follows inductively. 
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3 The Base Scheme. 

In this section, the base scheme (1.38) is analyzed for the approximation of the solution to (1.1) 
and (1.5) is established. That the stages are well-defined depends on the next lemma. 

Lemma 3.1 Provided (1.31) is satisfied, [ I  + kALE] i s  invertible, and for k small enough, 
[ I  + kAEz] is  as well. Also the following hold: 

(3.1) 

( 3 4  

(3.3) 

Il(kL;)'[I + kALE]-lXII L cllxll, 

II(kLE)"[I + kAz;]-'(kL$'XII I cllxll, 

Il(kLE)el[I + k A L ~ ] - 1 ( ~ L ~ ) 6 2 X I I  I cllXll, 

~ E S , , ,  0 ~ e s 1 ,  el ,o2=o,4;  e 1 = - e 2 = f + ,  o < m < n * ,  0 1 n < n * - 1 .  

Proof: The invertibility of [I + kALE] and the estimate (3.1) involve a spectral argument after A 
is transformed to  Jordan form, and the details are provided by Karakashian [13]. Now set: 

El [I + kAL;]-lkA(LE - E t )  and E2 E kA(LE - EK)[I  + kAL,,] n -1 

so that: 
( L E ) i [ I +  kAZKI(7f)i = [I+ kALE][I- (Li)iEi(Tf)i], 

(Thn) i [I+  kAEE](Li)i = [I- (7f ) iE2(Li ) i ] [ I+  kALE]. 

By (3.1) and (2.16): 

II(L;);El(7f)~xll+ Il(7hn)~Ez(L;)~xII I CkllXll tflz. E S h .  

Hence, for k small enough, [I + kAzi]  is invertible. Next, for 02 = 0, ki: 

( k L t ) i [ I  + kAE~]-1(k.Cp)62 = [I - ( . C ~ ) ~ h ( 7 , , n ) ~ ] - 1 ( k L ~ ) 6 2 + ~ [ I  + kAL:]-' 

and (3.2) follows for 01 = i. For 81 = 0, ki: 

(kLE)"[I + kAzE]-'(kLE)i = (kL,")61+i[I  + kAL;]-'[I - (7f)iE2(LE)i]-1 

and (3.2) follows for 82 = !j. Now, for the case 81 = 02 = 0, with X E S h  chosen arbitrarily: 

llX112 I !jII[I+ kAzi]X112 + !jllXl12 + kl(AZEX,X)I. 
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and the remaining case for (3.2) follows after combining the last three inequalities. Finally, using: 

(kLX)"[I + ICALF]-'(kL~)ea = [(~~)e'(~hm)el](IC~~)el[I + ~ A ~ ~ ] - ' ( ~ ~ ~ ) e a [ ( ~ h m ) e a ( ~ ~ ) e a ]  

(3.3) follows with (1.14), (1.15), and (3.1). 
Now, for the sequel, let the following be defined: 

After some straightforward calculations, the following error equation is established: 

Now, stability is to be established in the following norms, which according to (1.11) are well- 
defined for 0 < n < n*: 

(3.5) IIIxIIIn { ( x , x )  + ~ ( L L x , x ) ) '  x E she 

Also, from (1.16) with 1 = 0, it follows that these norms are equivalent: 

As in section 2, let the following be defined in the natural way for the product spaces: 
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Finally, (3.17) follows after using (3.7) and (1.26) in: 

I I ( ~ L E ) + R E E ~ I I  I I I [ ( ~ L E ) + ( R E  - ~ ~ ) ( ~ L E ) - ~ I ( ~ L ~ ) ~ E " I I +  IlrF(kLE);EnII. 

Next, (3.15)-(3.17) are used to obtain (3.13). Suppose that €2 is small enough that c2 < 1. Then, 
assume that ko > 0 is small enough that if 9 = (1 - c l ) / ( l+  c&) > 0, then c2 + 8 > 1. Next, 
multiply (3.17) by 8 and add the result to (3.16). With c5 G c2 + 9 - 1 > 0, and 0 < k 5 ko: 

llREE"1I2 + (1 + c5)ll(~~E)+REEnll2 5 lllEn1112n* 
By (l.ll), there is a Cf3 > 0 such that: 

n n 2 , l  n n 2  C6kllRhc 11 - 2Csll(k~%)~Rh[ 11 - 
Also, by (2.15), with xn E (kLE)+REt": 

ll(kL;+1))R;<"112 = 11x"112 + ((Th")+[Li+' - L;](T,")+xn,f) 5 (1 + c,k)(((kL;)+R;["((2. 

From the last three inequalities, it follows that: 

(1 + C6k)IlREEnll2 + (1 + 3c5)(1+ c7q- 1 II( ke;+')+Rn h< n II 2 < -lllEnlIl~* 

So assume that ko above, is also small enough that (1 + i cg) ( l+  c~ko)-'(l+ c?kO)-' 2 1 +&I,  for 
some 61 > 0. Then (3.13) follows for some E (-Cf3,0). H 

The next two lemmas are useful in subsequent consistency estimates. 

Lemma 3.3 Let to, tl, t 2  E [ O , t * ]  and It2 - tll 5 ck. Then, for integers m,l  1 0: 

e = o , I  1 (3.18) SUP IILBh(to)GJ(t)ll I C(l)llU0ll2(r+1) 
o<t<t* 

(3.19) 

Also, there exist E1 and E2 such that E = El + E2 while: 

(3.20) 

IlEll 5 c(l)(krn+l + h2km)llu01121, E E L:(t2 - t)mc3:w(t)dt. 

I 
11 [kLh (to)] 4 E1 I I 5 c(Z)hkm+ 3+i IlU0112(l+i) i = O , 1  

i = 0, l .  m+l+i (3.21) IlkLh(tO)E2ll 5 c ( W  IIU0Il2(l+i) 
Furthermore, for 0 5 n 5 n*: 

(3.22) 

Proof: By (1.6) or (1.17), (1.7), (1.19) and (1.4), for 0 5 t I t*, and 0 = 0, f: 

lllEllln 5 c(Z)(krn+l + hkrn+i + h2km)11u01121. 

\, 
IILBh(tO)afw(t)ll 5 clla:w(t)llE I cllafr](t)llE + CIIafu(t)112 5 c(l)(h + l)llu0ll2(1+l) 

which gives (3.18). Next: 
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and (3.19) follows with (1.19) and (1.4). Now, define: 

El E p2 - t)mai[w(t) - PE(tO)U(t)]dt 

= - 7t2 - tl)m~E(to)a:-'u(tl) + rnl t2( t2  - t)"-lPE(to)af-lu(t)~t. 

I I [ ~ ~ h ( t O ) l ~ ~ l 1 1  I ck 

t l  

By (1.17), (1.19), (1.18), and (1.4), for i = 0, 1: 

SUP {Ilaf-l+').l(t>llE + l l [ I  - ~ E ( ~ o ) l ~ : - ' + ' ~ ( ~ ) l l E >  
m+ $+i 

o<tst* 
I c( I) km+ if'hll uOl(z(r+i). 

By (1.2) and (1.4), for i = 0, 1: 

I b0I I2(1 +i) * 
IlkLh(tO)E211 I ckm+l+i sup IIL(to)af-'+'u(t)II 5 c(l)k m+l+i 

o<t<t* 

Now, since E = E1 + E2, (3.20) and (3.21) are established. Finally: 

(kL;E ,E)  I +11(kL;)+E1112 + )ll(kL,")4E112 + $llkL,"E2II' + +11Ell2 

and (3.22) follows after combining this with (3.19)-(3.21). 

(3.23) II~:(t)af~"(s)lI I c11~ol12P 

(3.24) 

w 

Lemma 3.4 The following hold for 0 5 s 5 k, and 0 5 t 5 t*: 

o - g ~ ~ - i ,  e=o ,% 1 

I lap"(s) I I  + hll.c;(t)a:O"(s)ll I Ch211U01I2#. 

Prooj From (1.17) or (1.6), (2.18), (2.2), and (1.4), it follows that for 0 I 15 p - 1 and 8 = 0, $: 
1 l i  

I I L: ( t )  a: Q" (s) I I I c( I) I I a;-i 7; (9) a: [E" (s) ii" (s) ] I I E 

I c ( l ) C  Iptmunsm-jl12 I c(l)llu0112# 

I c (1) y y I I a i - jE"(  s) a; n" (s) I I 
i= 0 i = O j = O  

I p-1 

j=Om= j 

which gives (3.23). Now, since afa"(s) f 0, from (2.23), (2.2), and (1.4), it follows that: 

P 

I la,"a"(S)I I  = Ip,"[Q"(s) - u"(s)]ll I cClla,"-'[r,"(s) - 'i"(s)]a:[E"(s>n"(s)]~~ 
i= 0 

P i  p-1cC-l 

5 c h 2 ~ ~ l l a f - j ~ " ( s ) a d u " ( s ) l l  5 c h 2 C  C IlapPsm-jl12 5 Ch2IIU01I2p. 
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Lemma 3.5 $Jy of (3.4) satisfies: 

(3.25) 

Prooj First, it is proved that: 

~ ~ ~ $ J ~ ~ \ ~ n  L ck(k" + hkm-i + h2.."1)ll~0112(p+l). 

(3.26) a f v ( o )  = D'eafw" 0 2 I I p -  1. 

Now, the result of differentiating Z ~ ( S ) D ~ ( S )  = POP(s)ii"(s) is: 

i=o m=o 

Letting s -t 0, with (1.35), it follows that for 0 5 I 5 p - 1: 

Then (3.26) follows inductively with: 

which results after differentiating L h ( t ) ~ ( t )  = PoL(t)u(t). Therefore: 

Next, by (1.35) and (1.33): 

Now define: 
@ IC ibTA-l [ I  + kAZZ]-'( kL;) ;A( Thn) i z i (  72) 4 [(LE) i E].  

so that by (3.2), (2.14), and (3.24): 
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Lemma 3.6 $2" of (3.4) satisfies: 

(3.27) I II GI II n I ckP+' I I uo I I2(P+l) - 
Proof: Define G(s) En(s)iin(s) so that with ill-defined terms understood to be zero: 

Letting s t 0, with (1.35) and (l.l), it follows that for 0 5 1 5 p - 1: 

Hence: 

Next, by (1.1) and (1.35): 

.i 
m = O  l=O m=o 

Hence by (3.2): 

Now, by (2.2) and (1.4): 
lll+;llln 5 ck(llEll + 1 1 J ' 1 1 ) *  

U 11- 1 
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Also, by (1.36) and (1.4): 

and (3.27) follows from the last three inequalities. 

Proofi First: 

Hence +? = -E + F and (3.29) follows after applying Lemma 3.3 to  E and F, and using (1.36) to 

With the consistency complete, it is now appropriate to discuss the development of the tech- 
niques used. First, it is possible to construct an error equation alternative to (3.4) which circumvents 
the constructions of section 2. However, this requires inverse properties. For example, one option 
involves the following replacements: 

obtain inequalities of the form (3.22). rn 

Then in the proof of Lemma 3.6, ~ ( s )  is changed to z i ( s ) P ( s ) ,  and bounding derivatives of the 
latter involves bounding products of the form Lt)(s)Tf)(t). This can be accomplished using inverse 
assumptions as demonstrated by Bales [2]. 
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Also, the original idea for overcoming the suboptimal convergence rates mentioned in connection 
with (1.39), was to find q x q matrices {Di};:: with which the following would lead to  optimal 
convergence estimates: 

m=O m=O l=O 

However, attempts to prove an optimal order of consistency have repeatedly led to the following 
conditions for the matrices {Dl}:.:: 

Doe = e; DiDje = Di+je, 0 I i ,  j , i  t j I u - 1; lADi-le = Die, 1 5 1 5 u - 1. 

Consider for example, adapting the proof of Lemma 3.5. Unfortunately, even though the number 
of unknowns matches the number of constraints in the equations above, it is shown in [14] that 
they can be solved only if Y I q + 1. 

Now, (1.5) is established in the following for (1.38). 

Theorem 3.1 Under the conditions of Lemma 3.1 and either Proposition 3.1 or 3.2, { U ~ } ~ o  are 
well-defined by (1.37) and (1.38), and the following holds: 

(3.30) 

Also, unless E < 0 in (3.9), c* depends ezponentially on t * .  

Proof: Set E 
and (3.29) for (3.4): 

max IIUL - u"ll I c*(hr + kp + hkp-t + h2kp-1)Iluolla. 
O<nSn* 

[(h' + k p  + hkp-i + h2kp-')llu011,I2. Then, combining (3.9), (3.25), (3.27), (3.28) 

IIIE"+'III:+l I (1 + "ck)lllPIIl: + ClkE 01 n 5 n* - 1. 

After dividing this by (1 + Zk)"+l and summing, the result is: 

Illelll: I (1 + "c)~1115°111: + cllc"l-lll - (1 + "c)"lE o < n < n * .  

Now, according to  (1.37), [I+kLi](o = [Po-P:]uo. So with (1.20), (1.18) and a spectral argument, 
it follows that: 

(3.31) 0 0  0 0  lllEo//l: 5 cll[PO - P E ] U  Illl[l+ kLh]-'[PO -  PI?]^ 11 I chrlluOllr- 

Then, (3.30) follows with (1.19) and the last two inequalities. 

4 Iterative Approximations. 

In this section, the iterative scheme (1.46) is analyzed for the approximation of the solution to 
(l.l), and (1.5) is established. First, a brief discussion of Preconditioned Iterative Methods (PIM's) 
is given. See Hageman and Young [ll] for more information. 

Let H be any finite-dimensional Hilbert space equipped with an inner product (.,.)H and an 
associated norm 11 1 1 ~ .  Also, let Q: H + H be H-selfadjoint and positive definite, and suppose 
that an approximation is required for the solution x* to: 

Qx* = b.  ( 4 4  
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Then, suppose that Qo: H -+ H is H-selfadjoint and positive definite, and that solving: 

is relatively inexpensive. Furthermore, assume that Q and Qo are equivalent: 

The operator Qo is called the preconditioner and the PIM’s of interest in this work are those with 
the following properties: 

i. If {zj}j”,, are given approximations to z* of (4.1), then calculating Z J + ~  only involves com- 
puting Qz, QOZ, (Qz, z ) ~ ,  and (Qoz, z ) ~  for certain z E H ,  and solving equations of the 
form (4.2). 

ii. There is a smooth decreasing function CT: (0,l) --t (0,l) such that a(1) = 0 and if (4.3) holds, 
then: 

(4.4) 
For example, the Preconditioned Conjugate Gradient Method satisfies the above properties, and it 
is popular for having CT(S)  = (1 - a/(l+ fi as opposed to say (1 - s)/(l + s), which is offered 
by various other PIM’s. 

Now, the rough discussion prior to (1.46) is expanded with more details. First, suppose that 
for 0 5 n 5 n* - 1, the approximations { U r } z = o  have been computed using methods described 
below, and recall that an efficient procedure is needed for computing UF defined by (1.40). Next, 
let @ denote an initial approximation to UF given as indicated in (1.42). Now, instead of actually 
computing {V}O<I<I, as suggested by (1.41), proceed as follows. Let a sequence of positive integers 
{jn}2<’ be specked. Then, suppose in an inductive fashion, that for I 2 1, el,jn has been 
computed from j,, PIM iterations as prescribed below, and let v be defined by the outer iteration: 

(4-5) [It kALE](scn)  = {SeU” + kSA(LE - ZE)c!!l,j,} I I l I I n  

with the understanding that ccjn con. Letting n and 1 be fixed, (4.5) can be written in the form: 

(4.6) [ I  + kX j LE]$; = Qi - k0; LE$;- 1 1IiSq 

where $0 E 0, $; (SP);, 1 I i I q,  and according to (1.35) with I = 0: 

(4.7) 

The natural preconditioning for (4.6) involves [ I  + kL:] which, according to (1.16) and (1.311, is 
equivalent to the operators of (4.6), i. e., for 1 5 i I q and 0 I n I n*: 

(44 P l W  + k G I X ,  x )  I ( [ I  + XiLEIX, x )  L P Z ( [ I +  G l x ,  x )  vx E s h .  
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Now, to  cover the case that A is not diagonalizable, define $i with: 

(4.9) [ I  + kXiLt]$i = & - kB;Lt@", 1 < i < q  

.". 
where &" E 0. Also, to obtain t,br for 1 5 i 5 q, set 4; G (SQl,jn)i and let iterates {@}o<j<jn 
be given by a PIM with preconditioner [ I  + kL:]. Then as (4.4) follows from (4.3), from (4.8) it 
follows that: 
(4.10) Ill4i - @I110 5 C[~(P l /P2) l j l I l4 i  - 4Plllo. 

e .  e .  

Finally, take Q E (t,bl,t,bz ,... and $ EE (t,bi,t,bi ,... ,$:)* so that 
iterates for (4.5) are defined by: 

(4.11) K,o -v- - I l,jn pn. = s - l @ j ,  1 5 j L j n .  

= S-'Q and inner 

- ", n 
41 - 

where: 

(4.14) 

From the last three inequalities, it follows that the integers {jn}:Lil may be chosen to satisfy 
(1.45) as claimed in the Introduction. First, the outer iterations (1.41) and (4.5) are shown to be 
well-conceived. 

Lemma 4.1 With u; given b y  (l.4O), the following holds: 

(4.15) Ip; - V2;lllo L cklllu; - ~lI110 

for every Vl,V2 E S h  satisfying: 

[I + kAtietlv2 = eU; + kA(LE - 2;)Vi. 

Proof: Since: 

(4.15) follows with (3.2), (2.16), and (3.6). rn 
The next lemma shows that {fl>}j,o converges to  G"' at a rate which reflects (4.10) whether 

or not the right sides of (4.6) and (4.9) are the same. 

Lemma 4.2 With PI  fi2nI and fl; given by (4.5) and (4.11): 

- lllvlr%-vf% "' < \,;. Il,--r",n -".n 1 1 ,  

(4.16) ",in 1110 - c i n i ~ l / ~ 2 j ~ ~ r *  I I I V ~ -  - Vi,o1110. 
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Proof: Letting a 5 a(pl/p2), with (4.10), it  follows that: 

I M+i - 4f l l lo  L Ill+; - 4 i l l l o  + Illdi - 4:lllo 

(1 + Cfl j ) l I l+ i  - 4i l l lo  + cajIl l+i - 4:1110. 

Ill+i - 4i l l lo  + cajl l l4;  - 4:1110 
F 

Subtracting (4.9) from (4.6), with (3.6), (1.31), and a spectral argument, it follows that: 

III+~ - &III; L CIII[I+ k ~ ; ] - ~ k e ~ ~ ; ( z - ~  - 4~1)111~ 
5 c ( { [ l +  kL;](kL;)[I + kX;L;]-2)(kL;)f(+i-, - 4kl), (kL;)4(+;-1 - i- 1 )) 

I C l l l k l  - 4::1111; 1FiFq 

Now, the last two inequalities give: 

Ill+; - 4? Ill0 I Cl l l$ i - l  - @-1lllo + c~Jnl l l+ i  - 4PllIo 
from which it follows recursively that: 

i 

I l k  - 4?ll lo 5 cajn lll+m - 4;lllo. 
m=l 

Then (4.16) follows after recalling (4.11) and that v;" = S-'@. 

Lemma 4.3 With UL defined by ( l . d O ) ,  the sequence {q:n}p-, satisfies (4.12). 

Proof: Applying Lemma 4.1 to  (4.5): 

Finally, (4.12) is established in the following. 

III'; - vi110 5 C ~ I I I ~ ;  - Gzl, jnI I Io- 

IIIV - q y l l o  I c 0 j " I l I v  - p o l l l o  = C a j n I I I p  - *l,jnlllo 

cajn{IllQ - qyllo + lllu; - q?l,jnIllo) 5 cojn(ck + 1)Ilp; - q ~ l , j n ~ ~ ~ o .  

Using this with (4.16) and (4.11): 

I 

Now, (4.12) follows after triangulating with v;". 
The next objective is to show that the convergence rate (1.5) can be preserved even when 

{ j  n In- n=O are chosen so that  (4.13) and (4.14) hold. So additional stability and consistency argu- 
ments follow. First, define: 

f % u ; - w  n and +n E q w n  - &)"+I 

where 9" is as in (3.4). Now, according to (1.46) and (1.38): 

U;" - RFU; = bTA-'(6; - Ut), 



so it follows that: 
(4.17) sn+' = R;cn + $" - bTA-'(D; - fi;). 
By (4.13) and (1.46), (0; - 6;) can be estimated in terms of (u; - C;). So, the error equation 
(4.17) is supplemented with the following one, which is obtained from (1.40) and (1.42) after some 
straightforward calculations: 

0;-C; = 

(4.18) 

n- 1 

(-l)n-m ( pn+ ) [ I  + kAE;]-lkA(E; - z r ) [ I+  kAEr]-lecm n - m  
m= n- 1- p, 

n- 1 

+ [I+kAE;]-' (-1) 
m=n- 1-p, 

n- 1 
(Dh" - fir) Pn+ 1 

m=n- 1- pn 

11- 1 

8 

= csy 15  n 5 n* - 1. 
1=1 

Before analyzing these error equations, a few adjustments must be made in Propositions 3.1 and 
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3.2 for the following stronger stability inequality: 

Proposition 4.1 Let (1.29) be satisfied. Then there are constants co > 0 and E, such that (4.19) 
holds. In fact, E < 0 i f  (1.27) holds and c(1) of (1.13) i s  small enough. 

Proof: By the same manipulations leading (3.10)) for (4.17) it follows that: 

n+l 2 n n  2 (l - c3k)lllf llln+1 I lllrhc Illn + E-1Clkllcn112 + c k - l l l l a h n  - ';Ill: + ck-'lll$'nlll:- 
By (1.26), I - r;  has a square root. Hence, taking xn E [I + k,5;]icn, with (1.29) it follows that: 

n l .  n ~ ~ ~ r h n ~ n ~ ~ \ ~  = 11xn112 - ( [ I  + rhn][l - rh] 2 %  3 [I - 'hn]'Xn) 5 / l l ~ n \ l l i  - s ( [ I  - rhn]Xn, xn)- 
Using (3.12)) there is a 2 I 0 such that: 

- ( [ I  - rhnlXn,Xn) I f(rhnxn, x") + ;(I+ i.k)llxnIl2 - llxnll2 = f~kllle"llli - fp - rhn1xn9 x") 
where 2 < 0 if (1.27) holds. Now with > $2 + c3 + E -lc1,  and co = f6, (4.19) follows after 
combining (3.25)) (3.27), (3.28)) (3.29) and the last three inequalities. 

As with Proposition 3.2, E < 0 is guaranteed for (4.19) by the following. 

Proposition 4.2 Let (1.27) and (1.28) be satisfied. Then, there are constants co > 0 and Z < 0 
such that (4.19) holds. 

Proof: In the proof of Proposition 3.2, replace Cn with en, and $'n with $'" - bTA-'(U; - 6;). 
Then with E f ( c 2  - c l ) ,  redefine 6 5 (1 - c1- 2 ~ ) / ( 1 +  c&) so that the last part of the proof is 
readily changed to give the following instead of (3.13): 

IIR;S"ll2 + (1 + El)ll(kL;+')+Rh"enl12 5 (1 + Ek)lllc"lll: - #kL;)icnl12. 

As with (3.14), it follows that: 
... 

IIIcn+'lll2n+1 5 (1 + ~~~111cn11/2n - E(kL;cn,en) + C k - l l l l q  - Uhnlll2n + c~-'lll$'nll12,. 

Next, since v 1 1, r ( 0 )  = 1 = -r'(O). So, there is a co > 0 such that for all z 1 0, r ( z )  is greater 
that the linear function 1 - $2, i. e., - e t  5 -2co[l - r(z)], Vz 1 0. Also, using (1.26), co can 
be assumed small enough that - E  5 -2co[l - r(z)], Vz 2 0. After multiplying the latter by z and 
adding the result to former, it  follows that: 

-&(kLhX, x) 5 -cO([I+ kLh"][l - rhn]x, x) V x E  sh. 

I Hence, (4.19) follows with (3.25)) (3.27), (3.28) and (3.29) and the last two inequalities- rn 

I Now, estimation of the terms of (4.18) begins. 
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Lemma 4.4 {€lY};=, of (4.18) satisfy: 

I 

I 

I I 
I 

I 

1 

r 
! 

I 

i 

1=1 m=n-l-p, m=n- 1- p ,  

Proof: First, note that: 

n- 1 

q = (-I)"-~ ( P n + 1  - ) [I+ kAz;]-'(kL;)iA 
m= n- 1- pn 

~(7;)4{(2; - L;) + (L; - .Cr) + (Lr - z ~ ) } ( 7 ; ) 3 [ ( L ; ) ~ ( 7 h m ) 4 ] ( k L ~ ) ~ [ I +  k A E r ] - ' e ~ ~ .  

So, €ly is estimated using (3.2), (2.16), (2.15), and (1.15). Also, estimates for €3; and et follow 
with (3.2) and (3.6). 

Lemma 4.5 {63Y}F=4 of (4.18) satisfy: 

6 

(4.21) III'FIIIn 5 ck(hr + kp)IIuoIIa. 
1=4 

Proof: Recall E and F defined in the proof of Lemma 3.5. By (3.18), and (3.23): 

IlEll + IlFll 5 Ck"llu0llz(p+l)- 

So 
manipulations used to prove Lemmas 3.6 and 3.7 give corresponding estimates for 63; and eg. 

Lemma 4.6 43; of (4.18) satisfies: 

can be estimated using the techniques applied for the estimation of e?. Also, the same 

(4.22) lp;l[ln I ck(k'" + h k p - i  + hZk~-')lluOllz(,+l). 

Proof: By (3.26), for n - 1 - pn 5 m 5 n - 1: 

Next, since: 
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it follows after some re-indexing that: 

Also, by (3.24): 

lllBmllln L ck(hk~- '  + h2k~-l)l lUo1~2(p+l) n - 1- Pn 5 m 5 n. 

Then (4.22) follows from the last two inequalities. 

Lemma 4.7 63; of (4.18) satisfies: 

(4.23) IIIQtIIIn 5 ck(kP + h2kP-')II~oI12(p+l) 

Proof: As in the proof of Lemma 3.5: 

P- 1 

i= 0 

f i m  - ewm - kA ryea,w(ry) = Em - Fm, 

and by (1.35): 

First, using (3.2): 



Finally, note that: 

So, by (1.4) and (1.19): 
I 

Now, (4.23) follows after combining the last four inequalities. - 
Next, the above lemmas are combined with (4.13) for the estimation of the term k-'lll&-U[lll;, 

in (4.19). 

Proposition 4.3 With 0; defined by (1.40) and 6; by (1.46), the following hold: 

n- 1 
m 2  m 2  ~-'III~; - fi;1112,1 ck-lpi { I I I ~ ~  - Gh 111, + I I I S ~ + '  - s IIImI 

~ n =  n- 1- pn 
(4.24) n- 1 

+ckpi lllcmllll + ck[(h' + kp + hkp-; + h2kp-1)lluolla)2 1 5 n 5 n* - 1, 
m- n- 1- p, 

(4.25) lllDh0 - qlll, I CkpII~oIIa. 

Prooj  By (1.46), (4.13) and (3.6): 

I I I Q  - ';IIIn 5 C P ~ I I I Q  - 'CIIIn 05 n 5 n* - 1. 

Then, combining (4.20), (4.21), (4.22), and (4.23) for (4.18) leads to: 

n- 1 n- 1 

III~; - QCIIln I { I I I ~ ~  - firIIIm + IIIsm+l - smIIIm} + ck IIISmIIIm 
m=n- 1- pn m=n-1-p, 

+ck(h'+ kpn + hkp-k + h2k"-1)~~uo~~a 15 n 5 n* - 1. 

From (4.14) and (1.43), it follows that: 

&kpn 5 ckp 0 5 n 5 n* - 1. 

Finally, (4.24) follows after combining the last three inequalities. Also, by (3.2), (3.31), and (3.18): 

l l l q  - 'illlo ~ l l l ~ ~ l l l o  5 cllls0lll0 + clll~olllo I C l l ~ O l l a  

and (4.25) follows after combining this with the two estimates above including the case n = 0. 

the following. 
&,im&on c;f the diEerezces [llgn+l - $n/!n and this is the content of Now, (4.24) demand5 

I 
1 
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Proposition 4.4 If (1.29) and (1.80) are satisfied, then the following holds: 

For the last term in (4.27), suppose first that (1.27) holds. After some calculations: 

(4.30) 

where: 

( { [ I  + kL;+'][I - r:+l] - [ I  + kLp][I - ri]}cn, en) = (E(kL:)icn, (kL;))cn) 

1 
E (kL:)-)[rr - rr+'](kL:)-i + [ (Thn)iL;+l(Tt) i ] (kL:))[rr  - r:+l](kLg)-5 

+(T~>+[L;+~ - L:](T,~+[I - r ~ ] .  4 

I 
I By (3.8), (2.15), (1.13), and (1.26): 

(4.31) IlEXll 5 ckllxll vx E s h .  
, 

Next, define re(.) z [1+ z]/[l+ (1 - E).] with E > 0 small enough that with (3.11) and (1.27): 
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Hence: 
w ; x ,  X I  5 ([I + kLEl[I - rhnlx, X I  vx E sh. 

Combining this with (4.30) and (4.31): 

(4.32) 

Finally, for the case that (1.27) holds, (4.26) follows after combining (4.28), (4.29), and (4.32) for 
(4.27). Now, assume that (1.27) fails, so that r(m) E 1 - bTA-'e = 1. Nevertheless, by (1.30) and 
( l . l l ) ,  [I - r:] is positive and invertible, so define: 

[({[I+ ~L;+ ' I [ I  - r;+l] - [I+ ICL;][I - r ; ] ) ~ ~ , < ~ ) l  5 c s - l k ( [ ~ +  ~L;][I- rh]< n n  ,<"). 

Fn 3 [ I +  kLz][I - r:] and F 2  E (kL:)[I + kL;]-2F;1. 

From (1.30), it  follows that: 

Next, since bTA-'e = 1 - r(w)  = 0: 

rh - 

(4.34) IIFxll 5 cllxll V X  E s h .  

n -1 - I - bTA-'{(kA,C;)[I + kA,Cp]-'}e = I + b T A -1 [I 4- kALh] e 

and hence: 
F, = -bTA-2e + bTA-l(A-l - I)[I+ kA,C;]-le. 

Therefore: 

Combining this with (4.34) for (4.33) gives (4.32) and hence (4.26). 
Finally, the convergence result (1.5) is established for (1.46) as follows. 

Theorem 4.1 Let the conditions of either Proposition 4.1 or 4.2, in addition to  those of Lemma 
9.1 and Proposition 4.4 be satisfied. Then, {j,,}::;' can be chosen so that (4.19) and (4.14) hold 
and provided EO > 0 is small enough, the approximations {U[}~~o obtained b y  (1.97) and (1.46) 
satisfy: 

max 1 1 ~ ;  - unll 5 c * ( ~  + I C ~  + hkp-3 + h2~p-1)~luolla. 
O<n<n* 

(4.35) 

Also, unless 2 < 0 in (4.19), c* depends exponentially on t*. 
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+[Ek-'tnf1(l + c3k) - CO]I/I[I - rhn15.~ ' n 2  llln 1 5  n 5 n * -  1. 

Now, for the compression of this inequality and others below, let the following be defined: 

- n  2 IIIcn+l - S"lIIi + IIIQ - u h  IIIn, p + l  Zn =_ lllcnlIli, 

~n E 1 1 1 [ 1 -  rhn]B~nl\li, E E [(h'+ kp + hkp-* + h2k"-1)ll~olla]2. 

With this notation, the following results after estimating ck-'lllU; - fiillli with (4.24): 

Z"l+ C1k-'.d+'D1+' + Ek-lt'+lS'+l < - ( 1  + Ek + ~ 2 ~ k t * ) Z '  
1-1 

+ ~ 4 #  C 
m=l-l-p1 

[k-'Dm+' + kZm] + ckE + [Ek-lt' + ~ ( 1 +  ~ 3 t * )  - ~01s' 15 15 n* - 1. 

Now, assume that E > 0 is chosen small enough that ~ ( 1  + c3t*) 5 co. In fact, if E < 0, suppose 
that for some 2 < 0, 1 + Ek + c2~kt*  5 1 + 2k. Otherwise, if E 2 0, take 2 > 0 in the following. Now, 
after summing the last inequality over 1 5 1 5 n 5 n* - 1, the result is: 

By (4.14) and (3.31), for 1 5 n 5 n* - 1: 

1-1 n n 

+ ~ 4 k . f " ;  Zm 5 (2+ C ~ E &  + I ) t * ) k C Z '  + ckZo 5 I k C Z '  + ckE 
1=1 1=1 m = l - l - p t  1=1 1=1 

where 1 5 0 if 2 < 0 and EO > 0 is small enough. Otherwise, take E > 0 in the following. Next, since 
( I +  l)/(m+ 1) I p+ 2 if 0 5 1 - 1 - pi 5 m 5 1 - 1, it follows using (4.14) that for 1 5 n 5 n* - 1: 

Combining the last three inequalities, for 15 n 5 n* - 1: 
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By (3.6), (4.26), (4.25), (1.26) and (3.31): 

z1 + [SI + D l ]  5 [cD1+ CZO] + [SI + D'] 5 c ( l +  k2)[ZO+ E] + (1 + Ck)SO 5 c(Z0 + E) 5 CE. 

Now, assume that BO > 0 is chosen small enough so that: 

0 5 n 5 n* - 1. 
f=O 

If 15 0, ignore the last sum and (4.35) follows after (1.19). If 1 > 0, then (4.35) follows with the 
discrete Gronwall Lemma and (3.31), but with c* depending exponentially on t * .  

5 Examples. 

The principal aim of this section is to present some computational results showing the strength 
of methods analyzed in this work. However, it is appropriate to  first indicate that the set of 
IRKM's which satisfy the many conditions imposed in foregoing proofs, is by no means vacuous. 
For example, in [15], it is explained that there exist q-stage methods of order q + 1 and satisfying 
(1.26)-(1.32) and (1.44), provided q = 1,2,3,  or 5. Furthermore, [15] gives explicit constructions 
of families of such methods for q = 2 and 3. On the other hand, it is shown in [15], that for every 
positive integer q, there exists a collocation type IRKM satisfying (1.27), (1.29)-(1.32), and (1.44). 

As mentioned in the Introduction and more carefully in [15], the preferred methods in a parallel 
environment are those for which the eigenvalues of A are distinct. These have been referred to 
as multiply implicit (MIRK) methods. Further, they are called real if a(A) c R, and otherwise 
complex. While the latter case has not been studied here, it is discussed in [15]. By considering 
that discussion together with the results of Bramble and Sammon [3], it can be seen that complex 
MIRK's can be analyzed using quadratic preconditioning and hence inverse assumptions. 

In contrast to MIRK's, there are the well-known methods for which the eigenvalues of A are 
identical and real. [12] As seen in (4.9), these so-called singly implicit (SIRK) methods offer a 
computational advantage on serial machines since at each time step, they require the formation of 
only a single new matrix with the dimension of Sh. A selection from this set of methods was made 
for the example considered below. 

The following problem is of the class defined in the Introduction: 

&U = -L( t )u  in (-1,I)  x [O,.1] { u = o  on {-I ,I}  x [O,.1] 
U ( Z , O )  = 1 - z 2  in ( -1 , l )  

where: 
L(t)u = -a,(el(z, t>a,u> + &(z, t )u,  

The solution is given by: ,. 
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k, h 
1/50 
1/60 

1/80 
1/90 

1/70 

1/100 

Table 1: Modified method 

CPU Time (sec) L2 error ( x 10') Order 
22 1.19 
30 .525 4.49 
38 .266 4.42 
48 .148 4.37 
59 .0889 4.33 
72 .0565 4.30 

' I C ,  h CPU Time (sec) L2 error (x 10') Order 
1/50 22 28.5 

1/80 6.36 
1/90 4.35 3.24 

3.09 3.24 

1/50 
1/60 
1/70 
1/80 
1/90 
1/100 

Table 2: Classical method 

23 28.3 
30 15.8 3.21 
38 9.61 3.21 
49 6.25 3.22 
59 4.28 3.22 
71 3.04 3.23 

For the spatial discretization, the Ordinary Galerkin Method was used and Sh was constructed of 
smooth cubic splines defined on a uniform mesh. For the temporal discretization, the well-known 
three-stage diagonally implicit (DIRK) method was used as it satisfies (1.26)-(1.32). [8] 

Now let (1.46) be identified as the modified method, and an analogue based on (1.39) as the 
classicalmethod. In addition, let a hybrid method be given by (1.46), but with D' replaced by T' in 
(1.35). These three methods were tested on the ICASE SUN 3/180. Defining E(h, k) E IIU;*-tP*II, 
the L2 errors E(k) E E ( k ,  k) are reported in Tables 1 - 3, together with estimates of the convergence 
order obtained according to  the formula: log(E(kz)/E(kl))/ 10g(k2/k1). 

With regard to time consumption, recall that the computational burden for the classical method 

I k , h  I CPU Time (sec) I L2 error (~10 ' )  I Order I 

Table 3: Hybrid method 
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is in forming q new stiffness matrices a t  each time step. On the other hand, with the constants 
{ 6 ~ } ~ ~ ~ ~ ~ ~ ~  chosen in the natural way as indicated in the Introduction, the burden for the 
modified method is in forming the terms & of (4.7), for the right side of (4.9). Also, the initial 
steps are relatively expensive, but the effect of this diminishes as the number of time steps increases. 
Note that among the three methods tested, numbers for the modified method were obtained with 
greater speed and accuracy, as well as with fourth order convergence. On the other hand, the 
others suffer from suboptimal convergence as explained in the Introduction. However, no rigorous 
explanation can be offered for the identical accuracy obtained by the classical and hybrid methods. 
Further, this author is unaware of any proof of the better than second order convergence seen in 
Tables 2 and 3. In this connection, note that the above solution has no time derivatives which are 
even in the domain of L ( t ) 2 ,  a condition considered necessary to escape order reduction in a general 
way. Nevertheless, only second order convergence is demonstrated for example, in Experiment 7.5.1 
of Dekker and Verwer [8], where a stiff ordinary differential equation is considered. Further, the 
modified method has been applied to this problem to give not only fourth order convergence, but 
accuracy exceeding that reported for any method discussed in the Experiment. 
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